A Tool for Long-memory Analysis in Computer Network Time Series

Julio C. Ramírez Pacheco¹, Deni Torres Román², and Joel Trejo Sanchez¹

Universidad del Caribe, SM 78, Manzana 1, lote 1, 77528, Cancún, QRoo, México jramirez@ucaribe.edu.mx, jtrejo@ucaribe.edu.mx
CINVESTAV Unidad Guadalajara, Av Científica 1145, 45010
Col. el Bajío, Zapopán, Jalisco, México dtorres@gdl.cinvestav.mx

Abstract. The paper presents a novel software tool for Hurst-index estimation in self-similar and long-range dependent computer network time series. The tool, named Variance Analyzer, is based on the aggregated variance algorithm with tuned cut-offs. A comparison with Selfis, a similar tool for long-memory, using different dependence characteristics (fGn and fDn), shows that Variance analyzer presents better accuracy, time of convergence and faster estimations. Similar results are also obtained when using well-known real LAN traffic. The sources of inaccuracies in the algorithm are identified and the correct tuning is proposed.

1 Introduction

Computer network traffic's non-standard behavior is well studied and has been observed in several network configurations(LANs, WANs, VBR traffic, etc) [1] [2] [3] [4] [5]. Extremes, heavy-tails, self-similarity and long-range dependence are present in delay, delay jitter, file size, transmission times and aggregate traffic traces. The presence of these phenomena have a deleterious impact on computer networks' performance affecting the quality of service of applications [6] [9] [13]. Thus, an important problem in these traces is to correctly fit a model and then to efficiently quantify the degree of non-standard behavior (tail-index or Hurst index estimation) for the particular selected model. Once the model and the estimation is performed, the next step is to take actions in order to improve quality of service degree and the overall network performance. To accomplish the estimation, several algorithms have been proposed, each algorithm presents varying degrees of accuracy and time-domain or frecuency-domain properties [12] [7] [14] [13]. In this paper, a novel software tool for self-similarity and long-range dependence analysis in computer network time series is presented. The C++ based tool, named Variance Analyzer, is based on the time-domain aggregated variance algorithm. A comparison procedure against Selfis, a similar tool for longmemory, is accomplished. The comparison procedure is performed using several synthetic fractional Gaussian noise and fractional differencing noise time series with known Hurst exponent. Finally, the use of well-known real LAN traffic is

© S. Torres, I. López, H. Calvo. (Eds.) Advances in Computer Science and Engineering Research in Computing Science 27, 2007, pp. 217-227 Received 23/02/07 Accepted 08/04/07 Final version 20/04/07 used. The organization of the paper is as follows. Section 2 discusses the measurement methodology in computer network traffic studies and the mathematical theory behind self-similar and long-memory processes. Section 3. provides description of the aggregated variance method for Hurst index estimation and comments on the sources of inaccuracies. Section 4. presents Variance analyzer characteristics and functionality. The comparison procedure and results is presented in section 5. Finally, section 6 concludes the paper.

2 Measurement Methodology and Mathematical Theory

In order to study computer network traffic's characteristics and its effect on network performance, some measurement of real traffic must be done. The result of the measurement is a trace from which a mathematical model is fitted. Usually, there is a relationship between network performance and some parameter of the selected mathematical model, therefore, accurate parameter estimation is important. The paper assumes that the trace fitted model is either self-similarity or long-memory. Next, we describe the measurement procedure in network performance studies and the mathematical models used in the paper. In the next section we cover parameter estimation of the assumed models.

2.1 Measurement Methodology

The first step in a network performance study is to obtain a trace from a measurement point. The measurement point could be a point in a LAN, WAN, link and path. A well known trace could also be generated and its behavior in a link or path could be an indicator of computer network performance. Note that in general, there are several ways to obtain a representative trace that can be used for network performance studies. The paper concentrates on the study of a trace representing the number of bytes/packets/bits per time unit on a measurement point. The trace, usually contains several types of traffic coming from different sources and with different quality of service characteristics. This trace is sometimes called the aggregate traffic trace or the traffic rate process and can be obtained from any computer network. Formally, let X_i represent the number of bytes/packets/bits for time period $(\tau_i - \tau_{i+1})$, then the trace $X = (X_i, i \in \mathbb{Z}+)$ contains the number of bytes/packes/bits for time periods $\{(\tau_i - \tau_{i+1})\}_{i \in \mathbb{Z}^+}$. Note that the trace X represents a discrete-time stochastic time series that can be analyzed by probabilistic means. It has been shown that self-similar and longmemory processes model well the behaviour of the traffic rate process [1] [2] [4]. Description of self-similar and long-memory processes including its relationship is described next.

2.2 Self-similarity

Intuitively, self-similarity means that the properties (e.g. correlation structure, density) of an object (e.g. a time series) are mantained independently of scaling in

time and/or space. For traffic modelling purposes, the interest is in discrete-time statistical second-order self-similar processes with some form of stationarity. A discrete-time stationary stochastic process, $X = (X_t, t \in \mathbb{Z}+)$, is said to be second-order self-similar, with self-similarity parameter $H = 1 - \beta/2$, called the Hurst parameter, if its autocorrelation function $\rho(k)$, $k \ge 1$ follows

$$\rho(k) = \frac{1}{2} \left((k+1)^{2-\beta} - 2k^{2-\beta} + (k-1)^{2-\beta} \right) = g(k), \tag{1}$$

where $\beta \in (0,1)$ and $H \in (1/2,1)$. Equation (1), implying same correlation structure in all time scales, is too strict to model network traffic, therefore, an asymptotic behaviour giving rise to equation (1) is mostly used. Let $X_a = (X^{(m)}(k), k \geq 1)$ be the aggregated process of level m, obtained by applying $X^{(m)}(k) = m^{-1} \sum_{t=(k-1)m+1}^{km} X(t)$ to the original time series $X = (X_t, t \in \mathbb{Z}+)$, then a discrete-time process is said to be asymptotic second-order self-similar if the aggregated process' autocorrelation function behaves asymptotically as

$$\rho^{(m)}(k) \sim \frac{1}{2} ((k+1)^{2-\beta} - 2k^{2-\beta} + (k-1)^{2-\beta}), \tag{2}$$

as $m \to \infty$, $\beta \in (0,1)$ and $H \in (1/2,1)$. Equation (1) implies that $\rho^m(k) = g(k)$, $\forall m \ge 1$ and equation (2) implies that $\rho^m(k) = g(k)$ only aymptotically.

2.3 Long-memory

Intuitively long-memory or long-range dependence means that correlations between distant points in time of a series X_t are non-zero. This point relationship can occur only when the autocorrelation function behaves hyperbolically as opossed to exponentially. Long-range dependence in a stationary stochastic process, $\{X_t\}_{t\in Z_+}$ occurs when the lag k autocorrelation function in X_t , $\rho(k): k \geq 1$ satisfies the following asymptotic behaviour

$$\rho(k) \sim c_p k^{-\beta},\tag{3}$$

where $c_p > 0$ is a constant and $0 < \beta < 1$. Equation (3) implies that the sum of the autocorrelation function of X_t is not bounded, i.e., $\sum_{k=0}^{\infty} \rho(k) = \infty$ and the spectral density having a pole at zero, i.e., $f(\lambda) \sim c_f |\lambda|^{\beta-1}$ as $\lambda \to 0$. Another interpretation is that the correlations of a LRD process decay slowly in time, thus, giving rise to non-summability of the correlations.

2.4 Self-similarity and Long-memory Relationship

Self-similarity and long-range dependence are closely related concepts. An asymptotic self-similar process is defined according to equation (2), now let $k \to \infty$, then

$$\rho^{(m)}(k) \sim H(2H-1)k^{-\beta}.$$
(4)

Equation (4) implies that in the limit(as $k \to \infty$), an asymptotic self-similar process is long-range dependent. Similarly a long-range dependent process X_t can be constructed by the increment process of a self-similar process, i.e., $X_t = (Y_t - Y_{t-1}, t = 1, 2, ...)$, e.g., fractional Gaussian noise is obtained from the increment of a fractional Brownian motion process. For more information on self-similar and long-range dependent processes refer to [16] [8] [9] [15].

3 Parameter Estimation using Aggregated Variance

Once the mathematical model has been fitted to the measured computer network trace, estimation of some parameters characterizing the model is accomplished. Parameter estimation is important due to the relationship between parameter value and computer network performance [6] [9]. This relationship can be used for estimating computer network performance given some parameter value and for control algorithms' design in computer network performance applications [6]. Parameter estimation for self-similar and long-memory process is reduced to Hurst-index estimation which caracterizes completely their behaviour. Parameter estimation for these models can be done either in time-domain or frecuency-domain [12] [13] [14]. The paper concentrates on the time-domain algorithm named aggregated variance which is described next.

3.1 Aggregated Variance Method

Consider the aggregated series $X_a = (X^{(m)}(k), k \ge 1)$, obtained by dividing the original length N series in blocks of size m and computing the sample mean to each block, we take the sample variance to this series and obtain

$$Var(X^{(m)}) = \frac{1}{N/m} \sum_{k=1}^{N/m} (X_k^{(m)} - \bar{X})^2,$$
 (5)

where \bar{X} represents the original series sample mean. Equation (5) represents aggregated process' variance, mostly referred to as the aggregated variance. The aggregated variance method is based on the asymptotic behavior of the sample mean's variance in a discrete-time self-similar process $X_t, t \in \mathbb{Z}+$. The sample mean can be seen as the aggregated process of a discrete time series X_t , i.e., $E\{X_t\} = X^{(m)}$. Note that the aggregated series corresponds to the measured traffic rate process. Sample mean's variance decay, i.e., $Var(E\{X_t\})$, in self-similar processes behaves asymptotically as

$$Var(X^{(m)}) = Var(E\{X_t\}) \sim m^{2H-2}, \tag{6}$$

where $X_k^{(m)}$ is the aggregated process and H the Hurst-index. Note from this result that plotting the variance of the aggregated process $X^{(m)}$ versus m in log-log axes, for varying aggregation levels m, should result in a straight line with slope 2H-2. A least squares fit to the points in the plot should give the slope. Once the slope is estimated, the Hurst-index can easily be obtained [13].

3.2 Sources of Inaccuracies

Note that equation (6) gives an asymptotic behavior of the sample mean's variance, then, certain inaccuracies may appear due to the time series selected length. The longer the series the better the estimate. Additionally, due to the least squares estimate of the slope, the selection of the low and high end values of m, named cut-offs, affect the Hurst-index's accuracy. A correct selection of these parameters (length and cut-offs) in any algorithm is then necessary.

3.3 Accurate Estimation of the Hurst-index

Accurate estimations, as mentioned above, are obtained by the correct selection of the cut-offs and time series' length. Cut-offs and length selection, named tuning in this paper, is accomplished by first selecting the correct cut-offs and finally, based on the correct cut-offs, obtain a representative time series length. Cut-off selection is accomplished in two steps. First step is to select the high-end cut-off and the second involves determining the low-end cut-off value. High-end cut-off selection for an H-index time series is accomplished by first selecting a fixed point in the x-axis, x_i , which is near the low-end regression value, then varying the points near the high-end regression value, x_j , $x_j \in (x_1, x_2)$. The high-end regression value which approximates better to the H value is selected as the high-end cut-off. Low-end cut-off selection is accomplished by varying the low-end regression values while maintaining the selected high-end cut-off fixed, as before, the low-end regression value which approximates better to the H value is selected as the low-end cut-off. Time series length selection is obtained via a cumulative analysis on the series. Cumulative analysis on a length N time series, X_t , $t = \{1, 2, ... N\}$, is obtained by first dividing the original length N time series in blocks of size $K \leq 1024$ and then estimating the Hurst-index for the series $\{X_i\}_{i=1}^{jK}$, $j=1,2,\ldots N/K$, i.e., $\hat{H_{jK}}=\Gamma(\{X_i\}_{i=1}^{jK}),\ j=1,2,\ldots N/K$, where $\Gamma(.)$ represents a Hurst-index estimation method. A plot of the estimated Hurst-index values $\hat{H_{jK}}$ versus j shows the behavior of the estimated Hurstindex. Usually, a stability region in the plot, is an indicator of the time series required length. The cut-off and time series' length selection procedures are performed by using synthetic long-memory traces, i.e., traces with well known *Hurst-index* values.

4 Variance Analyzer: A Tool for Long-memory

This section presents Variance Analyzer main features and functionality. It also describes briefly Selfis, a similar tool for long-memory analysis.

4.1 Variance Analyzer

Variance Analyzer is a novel C++ based software tool which estimates the Hurst-index using the aggregated variance method. The m values in the aggregated variance method in Variance Analyzer vary according to 10^x , x =

 $0.1, 0.2, \ldots, 0.1(log_{10}(N))$, where N is the time series length. The selection of these values provides Variance Analyzer with better resolution than existing tools. An advantage of this is better accuracy but less convergence to long time series. The low-end and high-end cut-offs values are set to 100.2 and 102.2. These values were obtained using fractional Gaussian noise and FARIMA(0, d, 0) synthetic long-memory traces. The time series length in these traces is set to 65536 points. Time series' Hurst-index estimation in Variance Analyzer is performed in two steps. First step involves the selection and automatic plotting of the text file. A requirement in this step is that the file should be in one-column format without spaces and comments. The non-conformance to this requirement causes Variance Analyzer to produce an error message. Once the file is plotted, a selection of a new file for analysis is possible. The second step involves estimating the Hurst-index of the selected and plotted time series. In this step, a plot of the regression points in the aggregated variance method is provided. Once the estimation is performed, Variance Analyzer provides functionality to return to step 1, i.e., to the orginial time series plot. As in the first step, a new file for analysis could be open. Variance Analyzer functionality is shown in the Petri net model of Figure 1. State p1 is the initial state where Variance Analyzer is opened. State p2 is the file open state, p3 is the file plotted state and p4 is the regression and Hurst-index estimation state. T2, T5 and T8 represent a non-valid file event and T1, T4, and T7 represent a valid file event. Event T3 is the plotting file event, T6 corresponds to the estimation and regression event and T9 represents the return event, i.e., the return to the original time series plot.

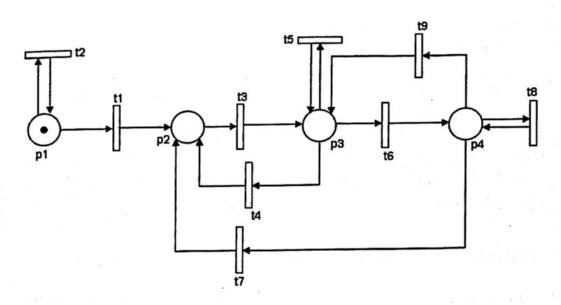


Fig. 1. Variance Analyzer Petri Net model

Figure 2 shows the user interface of Variance Analyzer. Variance Analyzer GUI consists of three main parts; the menu, the toolbar and the plotting area. The menu provides the user complete access to the functionality of Variance

Analyzer such as; file opening, program exit, Hurst-index estimation, etc. The toolbar provides the most often used functions such as file opening, Hurst-index estimation and the return button. The plotting area provides to the user the time series graphical representation and the regression points when applying the aggregated variance method.

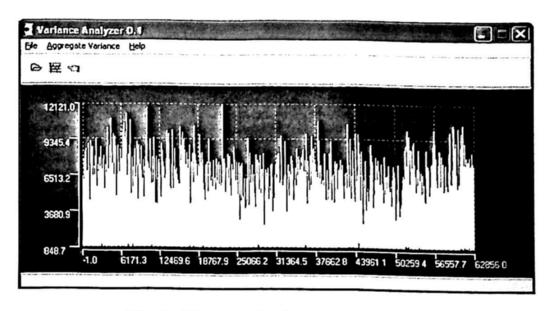


Fig. 2. Variance Analyzer User Interface

4.2 Selfis

Selfis is a well known software tool for self-similarity and long-memory analysis [10] [11]. Selfis is a Java-based software tool which estimates the Hurst-index using four time-domain methods and three frecuency-domain methods. It was noted that Selfis does not present the cut-offs used in the Hurst-index estimation. This paper is interested in the accuracy of Selfis aggregated variance method. Selfis aggregated variance implementation differs from that of Variance Analyzer, thus, our aim is to quantify the accuracy of each in estimating the Hurst-index for different synthetic and real long-memory traces. For more information on Selfis characteristics and functionality refer to [10] [11]

5 Comparison Procedure and Results

The comparison procedure of *Variance Analyzer* versus *Selfis* is presented in this section. Synthetic and real trace description is presented first, the comparison procedure is described next and finally, *Hurst-index* estimation using both tools is performed.

5.1 Long-memory Traces

In order to quantify the accuracy degree in long-memory analysis software tools, the use of traces with known Hurst-index are used. These traces are commonly named synthetic long-memory time series. The paper makes use of two synthetic long-memory time series types, namely fractional Gaussian noise(fGn) and FARIMA(0, d, 0)(fractional differencing noise, fDn) time series. fGn time series, are long-memory time series satisfying equation (1). fGn traces were created using modified Paxson's FFT algorithm with an asymptotic mean zero decay [17] [18]. Fractional differencing noise(FARIMA(0, d, 0)) time series, are series satisfying

$$X_i = \Delta^{-d} \epsilon_i, \ i \ge 1, \tag{7}$$

where ϵ_i are *iid* Gaussian random variables with zero-mean and Δ is the differencing operator satisfying $\Delta = \epsilon_i - \epsilon_{i-1}$. The autocovariance function of this process satisfies

$$\rho(k) = C_e k^{2d-1}, \ h \to \infty, \tag{8}$$

where $d \in (-1/2, 1/2)$ and $C_e = \pi^{-1}\sigma^2\Gamma(1-2d)\sin(\pi d)$. For large lags, the ACF for fGn and fDn has the same power decay, thus, H = d + (1/2). fDn time series were created using S+ package. Finally, the application of well-known real LAN traffic traces are used. The traces are the well-studied an classical traces of [1] [2].

5.2 Comparison Procedure

The comparison process was performed by using the synthetic traces described above. A set of nine fGn traces with Hurst-index from 0.55 to 0.95 in increments of 0.05 were created. An identical set of traces for fDn were also created. The length of the series, both for fGn and fDn, was set to 65536 points. For the real trace case, the use of AUG89.MB and AUG89.MP LAN time series from Bellcore were studied. The length for these series is about 360000 points representing the number of bytes(AUG89.MB) and packets(AUG89.MP) per time unit in a LAN environment.

5.3 Results

Table 1 shows Hurst-index estimations for $Variance\ Analyzer\ and\ Selfis\ using <math>fGn$ synthetic traces. Note that Selfis presents high bias for traces with $Hurst-index\ 0.55$ and 0.70-0.95. The bias $(\epsilon=H_{theoretic}-\hat{H}_{estimated})$ in Selfis tool for these traces is $\epsilon\geq 0.035$. Unlike Selfis, $Variance\ Analyzer$ presents minimum bias estimates for the Hurst-index in the interval 0.55-0.90. Note that $Variance\ Analyzer$ estimations are more accurate than Selfis for the fGn case. Table 2 shows the Hurst-index estimations for both tools when using FARIMA(0,d,0) long-memory time series. As can be noted from the table Selfis presents accurate estimates only for the fDn traces with $Hurst-index\ 0.60$ and 0.85. Variance

Table 1. Hurst-index estimations using fGn traces

	Selfis	Variance Analyzer
Hurst-index		
0.55	0.515	0.5526
0.60	0.586	0.5906
0.65	0.673	0.6507
0.70	0.594	0.7019
0.75	0.696	0.7391
0.80	0.720	0.7845
0.85	0.795	0.8431
0.90	0.804	0.8739
0.95	0.798	0.9088

Analyzer, unlike Selfis, presents accurate estimation in the (0.55, 0.85) interval. From the results it is said that Variance Analyzer presents more accurate estimations of the Hurst-index than Selfis both for fGn and fDn long-memory synthetic traces. The attention is now turned to the analysis of real LAN computer network time series. The study of these traces is important for testing the capability of algorithms in a real environment. Figure 3 shows Hurst-index estimations for AUG89.MB and AUG89.MP LAN traces. As can be seen from the table, Selfis, presents problems for long time series and is unable to open these types of traces. AUG89.MB and AUG89.MP length is 360000 points. Unlike Selfis, Variance Analyzer is capable of opening this file and presents accurate estimations for these traces. From this study and the above, it is seen that Variance Analyzer presents better accuracy either for synthetic and real long-memory time series.

Table 2. Hurst-index estimations using fDn traces

	Selfis	Variance Analyzer	
Hurst-index			
0.55	0.466	0.5499	
0.60	0.584	0.5890	
0.65	0.570	0.6341	
0.70	0.665	0.6921	
0.75	0.648	0.7339	
0.80	0.765	0.7756	
0.85	0.841	0.8438	
0.90	0.730	0.8674	
0.95	0.839	0.9050	

Table 3. Hurst-index estimations using real LAN traces

	Selfis	Variance Analyzer
Trace(Hurst-index)		
AUG89.MB(~0.80)	NotOpened	0.8166
$AUG89.MP(\sim 0.90)$	NotOpened	0.8662

6 Conclusions and Future Work

A tool for long-memory and self-similarity analysis for computer network time series was presented. The Hurst-index estimation tool, named Variance Analyzer, is based on the aggregated variance algorithm with tuned cut-offs. The sources of inaccuracies in the aggregated variance algorithm were identified and the correct selection of the low and high end cut-offs was proposed. A comparison procedure of Variance Analyzer versus Selfis showed that Variance Analyzer presents better accuracy and minimum-bias estimates of the Hurst-index. The comparison was performed by using known Hurst-index and real LAN time series. Variance Analyzer robustness to long time series was also accomplished. Based on this, Variance Analyzer should be the tool of choice when analyzing time series via the aggregated variance method for fGn and fDn-like time series. Variance Analyzer could also be employed for the analysis of other non-computer network time series, e.g., geological, hydrological, etc.

References

- Leland, W. E., Taqqu, M.S., Willinger, W., Wilson, D. V.: On the self-similar nature of Ethernet traffic. Proc. ACM SIGCOMM '93, San Francisco CA. (1993) 183-193
- Leland, W. E., Taqqu, M.S., Willinger, W., Wilson, D. V.: On the self-similar nature of Ethernet traffic(Extended version). IEEE/ACM Transactions on Networking 2 (1994) 1-15
- Beran, J., Sherman, R., Taqqu, M. S., Willinger, W.: Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on communications 43 (1995) 1566-1579
- Crovella, M., Bestavros, A.: Self-similarity in Word-Wide-Web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking. 5 (1997) 835–846
- Paxson, V., Floyd, S.: Wide-area traffic: The failure of poisson modelling. IEEE/ACM Transactions on Networking. 3 (1995) 226-244
- Park, K.: On the effect of traffic self-similarity on network performance. Proc. SPIE
 International conference on performance and control of network systems. (1997)
- Taqqu, M. S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: An empirical study. Fractals. 3 (1995) 785–798
- 8. Beran, J.: Statistics for Long-memory Processes. New York, Chapman & Hall (1994)

- 9. Park, K., Willinger W.: Self-similar Network Traffic and Performance Evaluation. Wiley-Interscience (2000)
- Karagiannis, T., Faloutsos, M., Molle, M.: A User-Friendly Self-similarity Analysis Tool. Special section on Tools and Technologies for Networking Research and Education, ACM SIGCOMM Computer Communication Review. (2003)
- Karagiannis, T., Faloutsos, M.: SELFIS: A Tool for Self-similarity and Long-range Dependence Analysis. 1st Workshop on Fractals and Self-similarity in Data Mining: Issues and Approaches. (2002)
- Taqqu, M. S., Teverovsky, V.: Semi-parametric graphical estimation techniques for long-memory data Athens Conference on Applied Probability and Time series analysis. 115 (1996) 420–432
- Adler, R., Feldman, R., Taqqu, M. S.: A Practical guide To Heavy-Tails: Statistical Techniques and Applications. Boston, Birkhauser. (1998)
- Kokoszka, P., Taqqu, M. S.: Parameter Estimation for infinite variance fractional ARIMA. Annals of Statistics. 24 (1996) 1880–1913
- Lopez-Ardao, J., Lopez-Garcia, C., Suarez-Gonzalez, A., Fernandez-Veiga, M., Rodriguez-Rubio, R.: On the use of Self-similar Processes for Network Simulation. ACM Transactions on Modelling and Computer simulation. 10 (2000) 125-151
- Tsybakov, B., Georganas, N.: Self-similar Processes in Communications Networks. IEEE Transactions on Information Theory. 44 (1998) 1713–1725
- Paxson, V.: Fast, Approximate Synthesis of Fractional Gaussian Noise For Generating Self-similar Network Traffic. Computer Communications Review. 27 (1997) 5-18
- Rolls, D.: Improved Fast Approximate Synthesis of Fractional Gaussian Noise. Hawaii International Conference on Statistics and Related Fields. (2002)