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Abstract. The paper presents a novel software tool for Hurst-indez esti-
mation in self-similar and long-range dependent computer network time
series. The tool, named Variance Analyzer, is based on the aggregated
variance algorithm with tuned cut-offs. A comparison with Selfis, a simi-
lar tool for long-memory, using different dependence characteristics(fGn
and fDn), shows that Variance analyzer presents better accuracy, time
of convergence and faster estimations. Similar results are also obtained
when using well-known real LAN traffic. The sources of inaccuracies in
the algorithm are identified and the correct tuning is proposed.

1 Introduction

Computer network traffic’s non-standard behavior is well studied and has been
observed in several network configurations(LANs, WANs, VBR traffic, etc) [1]
[2] [3] [4] [5]. Extremes, heavy-tails, self-similarity and long-range dependence are
present in delay, delay jitter, file size, transmission times and aggregate traffic
traces. The presence of these phenomena have a deleterious impact on computer
networks’ performance affecting the quality of service of applications [6] [9] [13].
Thus, an important problem in these traces is to correctly fit a model and then to
efficiently quantify the degree of non-standard behavior(tail-inder or Hurst index
estimation) for the particular selected model. Once the model and the estimation
is performed, the next step is to take actions in order to improve quality of ser-
vice degree and the overall network performance. To accomplish the estimation,
several algorithms have been proposed, each algorithm presents varying degrees
of accuracy and time-domain or frecuency-domain properties [12] [7] [14] [13].
In this paper, a novel software tool for self-similarity and long-range depen-
dence analysis in computer network time series is presented. The C++ based
tool, named Variance Analyzer, is based on the time-domain aggregated vari-
ance algorithm. A comparison procedure against Selfis, a similar tool for long-
memory, is accomplished. The comparison procedure is performed using several
synthetic fractional Gaussian noise and fractional differencing noise time series
with known Hurst exponent. Finally, the use of well-known real LAN traffic is
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used. The organization of the paper is as follows. Section 2 discusses the mea-~
surement methodology in computer network traffic studies and the mathemat-
ical theory behind self-similar and long-memory processes. Section 3. provides
description of the aggregated variance method for Hurst index estimation and
comments on the sources of inaccuracies. Section 4. presents Variance analyzer
characteristics and functionality. The comparison procedure and results is pre-
sented in section 5. Finally, section 6 concludes the paper.

2 Measurement Methodology and Mathematical Theory

In order to study computer network traffic’s characteristics and its effect on net-
work performance, some measurement of real traffic must be done. The result of
the measurement is a trace from which a mathematical model is fitted. Usually,
there is a relationship between network performance and some parameter of the
selected mathematical model, therefore, accurate parameter estimation is im-
portant. The paper assumes that the trace fitted model is either self-similarity
or long-memory. Next, we describe the measurement procedure in network per-
formance studies and the mathematical models used in the paper. In the next
section we cover parameter estimation of the assumed models.

2.1 Measurement Methodology

The first step in a network performance study is to obtain a trace from a mea-
surement point. The measurement point could be a point in a LAN, WAN, link
and path. A well known trace could also be generated and its behavior in a link
or path could be an indicator of computer network performance. Note that in
general, there are several ways to obtain a representative trace that can be used
for network performance studies. The paper concentrates on the study of a trace
representing the number of bytes/packets/bits per time unit on a measurement
point. The trace, usually contains several types of traffic coming from different
sources and with different quality of service characteristics. This trace is some-
times called the aggregate traffic trace or the traffic rate process and can be
obtained from any computer network. Formally, let X; represent the number of
bytes/packets/bits for time period (7; — 7i41), then the trace X = (X;, € Z+)
contains the number of bytes/packes/bits for time periods {(7: — Ti+1)}iez+-
Note that the trace X represents a discrete-time stochastic time series that can
be analyzed by probabilistic means. It has been shown that self-similar and long-
memory processes model well the behaviour of the traffic rate process [1] 2] [4]-
Description of self-similar and long-memory processes including its relationship
is described next.

2.2 Self-similarity

Intuitively, self-similarity means that the properties(e.g. correlation structure,
density) of an object(e.g. a time series) are mantained independently of scaling in
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time and/or space. For traffic modelling purposes, the interest is in discrete-time
statistical second-order self-similar processes with some form of stationarity. A
discrete-time stationary stochastic process, X = (X;,t € Z+), is said to be
second-order self-similar, with self-similarity parameter H = 1 — /2, called the
Hurst parameter, if its autocorrelation function p(k), k > 1 follows

plk) = 3 ((k + 1) — 262~ 4 (k — 1)-#) = g(k), (1)

where 8 € (0,1) and H € (1/2,1). Equation (1), implying same correlation
structure in all time scales, is too strict to model network traffic, therefore,
an asymptotic behaviour giving rise to equation (1) is mostly used. Let X, =
(X (k),k = 1) be the aggregated process of level m, obtained by appliying
X)) (k) =m™? Zf:(k—l)m+l X (t) to the original time series X = (X, t € Z+),
then a discrete-time process is said to be asymptotic second-order self-similar if
the aggregated process’ autocorrelation function behaves asymptotically as

p(m)(k) _ -;—((k B 1)2—.6 — k28 + (k — 1)2-—-13)’ (2)

asm — oo, B € (0,1) and H € (1/2,1). Equation (1) implies that p™(k) =
g(k),¥Ym = 1 and equation (2) implies that p™ (k) = g(k) only aymptotically.

2.3 Long-memory

Intuitively long-memory or long-range dependence means that correlations be-
tween distant points in time of a series X; are non-zero. This point relation-
ship can occur only when the autocorrelation function behaves hyperbolically as
opossed to exponentially. Long-range dependence in a stationary stochastic pro-

cess, {X:}tez, occurs when the lag k autocorrelation function in X, plk) :k>1
satisfies the following asymptotic behaviour

p(k) ~ cpk", (3)
where ¢, > 0 is a constant and 0 < 8 < 1. Equation (3) implies that the sum of
the autocorrelation function of X, is not bounded, i.e., 3°%° . p(k) = 0o and the
spectral density having a pole at zero, i.e., f(A) ~ ¢; | A |P~1 as A — 0. Another

interpretation is that the correlations of a LRD process decay slowly in time,
thus, giving rise to non-summability of the correlations.

2.4 Self-similarity and Long-memory Relationship
Self-similarity and long-range dependence are closely related concepts. An asymp-

totic self-similar process is defined according to equation (2), now let k — oo,
then

p™ (k) ~ H(2H — 1)k~P. (4)
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Equation (4) implies that in the limit(as k¥ — o0), an asymptotic self-similar
process is long-range dependent. Similarly a long-range dependent process X, can
be constructed by the increment process of a self-similar process, i.e., Xy = (Yz —
Yi-1,t = 1,2,..), e.g., fractional Gaussian noise is obtained from the increment
of a fractional Brownian motion process. For more information on self-similar
and long-range dependent processes refer to [16] [8] [9] [15].

3 Parameter Estimation using Aggregated Variance

Once the mathematical model has been fitted to the measured computer network
trace, estimation of some parameters characterizing the model is accomplished.
Parameter estimation is important due to the relationship between parameter
value and computer network performance [6] [9]. This relationship can be used
for estimating computer network performance given some parameter value and
for control algorithms’ design in computer network performance applications [6].
Parameter estimation for self-similar and long-memory process is reduced to
Hurst-indez estimation which caracterizes completely their behaviour. Parame-
ter estimation for these models can be done either in time-domain or frecuency-
domain [12] [13] [14]. The paper concentrates on the time-domain algorithm
named aggregated variance which is described next.

3.1 Aggregated Variance Method

Consider the aggregated series X, = (X(™)(k), k > 1), obtained by dividing the
original length NN series in blocks of size m and computing the sample mean to
each block, we take the sample variance to this series and obtain

N/m

3 (X = B, (5)

m —_— —
Var(X™) = Nim
where X represents the original series sample mean. Equation (5) represents
aggregated process’ variance, mostly referred to as the aggregated variance. The
aggregated variance method is based on the asymptotic behavior of the sample
mean’s variance in a discrete-time self-similar process X;,t € Z+. The sample
mean can be seen as the aggregated process of a discrete time series X, i.e.,
E{X;} = X(™). Note that the aggregated series corresponds to the measured
traffic rate process. Sample mean’s variance decay, i.e., Var(E{Xt}), in self-
similar processes behaves asymptotically as

Var(X™) = Var(E{X.}) ~ m**~2, (6)

where X ,(c’") is the aggregated process and H the Hurst-index. Note from this
result that plotting the variance of the aggregated process X (m) versus m in
log-log axes, for varying aggregation levels m, should result in a straight line
with slope 2H — 2. A least squares fit to the points in the plot should give the
slope. Once the slope is estimated, the Hurst-indez can easily be obtained [13].
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3.2 Sources of Inaccuracies

Note that equation (6) gives an asymptotic behavior of the sample mean’s vari-
ance, then, certain inaccuracies may appear due to the time series selected length.
The longer the series the better the estimate. Additionally, due to the least
squares estimate of the slope, the selection of the low and high end values of m,
named cut-offs, affect the Hurst-indez’s accuracy. A correct selection of these
parameters(length and cut-offs)in any algorithm is then neccesary.

3.3 Accurate Estimation of the Hurst-index

Accurate estimations, as mentioned above, are obtained by the correct selection
of the cut-offs and time series’ length. Cut-offs and length selection, named
tuning in this paper, is accomplished by first selecting the correct cut-offs and
finally, based on the correct cut-offs, obtain a representative time series length.
Cut-off selection is accomplished in two steps. First step is to select the high-end
cut-off and the second involves determining the low-end cut-off value. High-end
cut-off selection for an H — indez time series is accomplished by first selecting
a fixed point in the z-axis, x;, which is near the low-end regression value, then
varying the points near the high-end regression value, z;, z; € (z1,22). The
high-end regression value which approximates better to the H value is selected
as the high-end cut-off. Low-end cut-off selection is accomplished by varying the
low-end regression values while maintaining the selected high-end cut-off fixed,
as before, the low-end regression value which approximates better to the H value
is selected as the low-end cut-off. Time series length selection is obtained via a
cumulative analysis on the series. Cumulative analysis on a length N time series,
X:, t = {1,2,...N}, is obtained by first dividing the original length N time
series in blocks of size K < 1024 and thep estimating the Hurst-indez for the
series {Xi};?fl , J=12,...N/K, ie., Hjgx = I‘({X,-};?:KI), i=12,...N/K,
where I'(.) represents a Hurst-indez estimation method. A plot of the estimated
Hurst-indez values Hjx versus j shows the behavior of the estimated Hurst-
indez. Usually, a stability region in the plot, is an indicator of the time series
required length. The cut-off and time series’ length selection procedures are

performed by using synthetic long-memory traces, i.e., traces with well known
Hurst-indezx values.

4 Variance Analyzer: A Tool for Long-memory

This section presents Variance Analyzer main features and functionality. It also
describes briefly Selfis, a similar tool for long-memory analysis.

4.1 Variance Analyzer

Variance Analyzer is a novel C++ based software tool which estimates the
Hurst-indez using the aggregated variance method. The m values in the ag-
gregated variance method in Variance Analyzer vary according to 10%, z =
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0.1,0.2,...,0.1(logi0(N)), where N is the time series length. The selection of
these values provides Variance Analyzer with better resolution than existing
tools. An advantage of this is better accuracy but less convergence to long time
series. The low-end and high-end cut-offs values are set to 10°? and 10%2. These
values were obtained using fractional Gaussian noise and FARIMA(0, d, 0) syn-
thetic long-memory traces. The time series length in these traces is set to 65536
points. Time series’ Hurst-indez estimation in Variance Analyzer is performed
in two steps. First step involves the selection and automatic plotting of the text
file. A requirement in this step is that the file should be in one-column format
without spaces and comments. The non-conformance to this requirement causes
Variance Analyzer to produce an error message. Once the file is plotted, a se-
lection of a new file for analysis is possible. The second step involves estimating
the Hurst-indez of the selected and plotted time series. In this step, a plot of
the regression points in the aggregated variance method is provided. Once the
estimation is performed, Variance Analyzer provides functionality to return to
step 1, i.e., to the orginial time series plot. As in the first step, a new file for
analysis could be open. Variance Analyzer functionality is shown in the Petri
net model of Figure 1. State p1 is the initial state where Variance Analyzer is
opened. State p2 is the file open state, p3 is the file plotted state and p4 is
the regression and Hurst-indez estimation state. T2, T5 and T8 represent a
non-valid file event and T1, T4, and T7 represent a valid file event. Event T3
is the plotting file event, T6 corresponds to the estimation and regression event
and T9 represents the return event, i.e., the return to the original time series

plot.

=

Fig. 1. Variance Analyzer Petri Net model

Figure 2 shows the user interface of Variance Analyzer. Variance Analyzer
GUI consists of three main parts; the menu, the toolbar and the plotting area.
The menu provides the user complete access to the functionality of Variance
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Analyzer such as; file opening, program exit, Hurst-indez estimation, etc. The
toolbar provides the most often used functions such as file opening, Hurst-index
estimation and the return button. The plotting area provides to the user the
time series graphical representation and the regression points when applying the
aggregated variance method.
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Fig. 2. Variance Analyzer User Interface

4.2 Selfis

Selfis is a well known software tool for self-similarity and long-memory analy-
sis [10] [11]. Selfis is a Java-based software tool which estimates the Hurst-indez
using four time-domain methods and three frecuency-domain methods. It was
noted that Selfis does not present the cut-offs used in the Hurst-indez esti-
mation. This paper is interested in the accuracy of Selfis aggregated variance
method. Selfis aggregated variance implementation differs from that of Vari-
ance Analyzer, thus, our aim is to quantify the accuracy of each in estimating
the Hurst-indez for different synthetic and real long-memory traces. For more
information on Selfis characteristics and functionality refer to [10] [11]

5 Comparison Procedure and Results

The comparison procedure of Variance Analyzer versus Selfis is presented in this
section. Synthetic and real trace description is presented first, the comparison

procedure is described next and finally, Hurst-indez estimation using both tools
is performed.
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5.1 Long-memory Traces

In order to quantify the accuracy degree in long-memory analysis software tools,
the use of traces with known Hurst-indez are used. These traces are commonly
named synthetic long-memory time series. The paper makes use of two syn-
thetic long-memory time series types, namely fractional Gaussian noise(fGn)
and FARIMA (O, d, 0)(fractional differencing noise, f Dn) time series. fGn time
series, are long-memory time series satisfying equation (1). fGn traces were cre-
ated using modified Paxson’s FFT algorithm with an asymptotic mean zero
decay [17] [18]. Fractional differencing noise(FARIMA(0, d,0)) time series, are

series satisfying

-Xi — A_des" i > 1! (7)
where ¢; are iid Gaussian random variables with zero-mean and A is the differ-
encing operator satistying A = ¢; — €;—;. The autocovariance function of this
process satisfies
p(k) = Cck?~1, h — o0, (8)
whered € (—1/2,1/2) and C. = n~'02I'(1—2d) sin(wd). For large lags, the ACF
for fGn and fDn has the same power decay, thus, H = d + (1/2). fDn time
series were created using S+ package. Finally, the application of well-known real
LAN traffic traces are used. The traces are the well-studied an classical traces
of [1] [2].

5.2 Comparison Procedure

The comparison process was performed by using the synthetic traces described
above. A set of nine fGn traces with Hurst-indez from 0.55 to 0.95 in increments
of 0.05 were created. An identical set of traces for fDn were also created. The
length of the series, both for fGn and fDn, was set to 65536 points. For the
real trace case, the use of AUG89.MB and AUG89.MP LAN time series
from Bellcore were studied. The length for these series is about 360000 points
representing the number of bytes(AUG89.MB) and packets(AUG89.MP) per

time unit in a LAN environment.

5.3 Results

Table 1 shows Hurst-indez estimations for Variance Analyzer and Selfis using
fGn synthetic traces. Note that Selfis presents high bias for traces with Hurst-
indez 0.55 and 0.70 — 0.95. The bias(e = Hineoretic — Hestimated) in Selfis tool
for these traces is € > 0.035. Unlike Selfis, Variance Analyzer presents minimum
bias estimates for the Hurst-indez in the interval 0.55 —0.90. Note that Variance
Analyzer estimations are more accurate than Selfis for the fGn case. Table 2
shows the Hurst-indez estimations for both tools when using FARIMA(0, d,0)
long-memory time series. As can be noted from the table Selfis presents accu-
rate estimates only for the fDn traces with Hurst-indez 0.60 and 0.85. Variance
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Table 1. Hurst-indez estimations using fGn traces

Selfis Variance Analyzer
Hurst-index
0.55 0.515 0.5526
0.60 0.586 0.5906
0.65 0.673 0.6507
0.70 0.594 0.7019
0.75 0.696 0.7391
0.80 0.720 0.7845
0.85 0.795 0.8431
0.90 0.804 0.8739
0.95 0.798 0.9088

Analyzer, unlike Selfis, presents accurate estimation in the (0.55,0.85) interval.
From the results it is said that Variance Analyzer presents more accurate es-
timations of the Hurst-index than Selfis both for fGn and fDn long-memory
synthetic traces. The attention is now turned to the analysis of real LAN com-
puter network time series. The study of these traces is important for testing the
capability of algorithms in a real environment. Figure 3 shows Hurst-indez esti-
mations for AUG89.MB and AUG89.MP LAN traces. As can be seen from
the table, Selfis, presents problems for long time series and is unable to open
these types of traces. AUG89.MB and AUG89.MP length is 360000 points.
Unlike Selfis, Variance Analyzer is capable of opening this file and presents ac-
curate estimations for these traces. From this study and the above, it is seen

that Variance Analyzer presents better accuracy either for synthetic and real
long-memory time series.

Table 2. Hurst-inder estimations using fDn traces

Selfis Variance Analyzer
Hurst-index
0.55 0.466 0.5499
0.60 0.584 0.5890
0.65 0.570 0.6341
0.70 0.665 0.6921
0.75 0.648 0.7339
0.80 0.765 0.7756
0.85 0.841 0.8438
0.90 0.730 0.8674
0.95 0.839 0.9050
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Table 3. Hurst-indez estimations using real LAN traces

Selfis Variance Analyzer
Trace( Hurst-index)
AUGS89.MB(~ 0.80)|NotOpened 0.8166
AUGS89.MP(~ 0.90)| NotOpened 0.8662

6 Conclusions and Future Work

A tool for long-memory and self-similarity analysis for computer network time
series was presented. The Hurst-indez estimation tool, named Variance Ana-
lyzer, is based on the aggregated variance algorithm with tuned cut-offs. The
sources of inaccuracies in the aggregated variance algorithm were identified and
the correct selection of the low and high end cut-offs was proposed. A compari-
son procedure of Variance Analyzer versus Selfis showed that Variance Analyzer
presents better accuracy and minimum-bias estimates of the Hurst-index. The
comparison was performed by using known Hurst-indez and real LAN time se-
ries. Variance Analyzer robustness to long time series was also accomplished.
Based on this, Variance Analyzer should be the tool of choice when analyzing
time series via the aggregated variance method for fGn and fDn-like time series.
Variance Analyzer could also be employed for the analysis of other non-computer

network time series, e.g., geological, hydrological, etc.
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